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By introducing a CNDO adapted approximation into an appropriate irre- 
ducible interaction part a simple formula for calculation of vertical ionization 
potentials (VIP's) is derived. The method is applied to the molecules F2, HF, 
C2F4, CH2F2, BFa, CH3F, CF4. 
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1. Introduction 

The first connection of the Green's function method for VIP calculation with the 
CNDO approximation was made by Kellerer et al. [1, 2] who inserted CNDO 
values into formulas for Koopmans'  defects used earlier by Cederbaum et al. [3-6] 
with ab initio values. The Koopmans'  defects obtained in this way were added to 
ab initio orbital energies. Biskupi6 et al. [7], however, argued that defects calculated 
with C N D O  data should be added to CNDO orbital energies and tried to take 
account of the specific CNDO properties by an adequate approximation for the 
irreducible self-energy part in the Dyson equation. This latter approach is not 
expected to yield as reliable results as one based on ab initio calculations. On the 
other hand, because of the difficulty to perform ab initio calculations for larger 
molecules, it should be useful to have a method which is completely within the 
CNDO framework. In Ref. [7] the approximation for the irreducible self-energy 
part was determined by a maximal appearing of Coulomb two-particle molecular 
integrals (which were numerically found to be dominant against the others) simul- 
taneously with saving of a simplicity of the final expression, but as mentioned by 
Lazzeretti et al. [18] this self-energy part has wrong analytical properties. More- 
over, the construction of the self-energy part in Ref. [7] seems to be rather intuitive. 
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The purpose of our paper is, therefore, to extend this attempt by giving an 
alternative approximation for the irreducible self-energy part with correct analytical 
properties, found in a deductive manner. 

2. Theory 

Using the Goldstone diagram-technique, the rules for which are listed e.g. in Ref. 
[8], p. 65 (we draw only one time-ordering for all), the exact irreducible self-energy 
part M can be written as definition for a response function R [9, 10]: 

(i) 

By stating a Dyson-like equation for R one can define an irreducible interaction 
part I [9, 10]: 

4- (2) 

(The irreducibility of I means that it is not possible to split I by merely cutting one 
triplet of parallel lines.) The diagrammatic expansion of I starts with: 

4- . . .  

(3) 
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We enter now the CNDO framework [11, 1, 2, 7], i.e. we take CNDO values for the 
Hartree-Fock orbital energies e~ and evaluate the molecular matrix elements V~jk~ by 

= e~.C.kCvjC~z~'AB (4) 
A , B  /z v 

where ~'AB are the CNDO Coulomb two-particle atomic integrals and c,~ the CNDO 
coefficients. 

In this framework we make the following approximations: 
A. We disregard renormalization, i.e. we replace in Eqs. (1)-(3) all double lines by 

single ones. 
B. We introduce a CNDO adapted interaction into the irreducible interaction 

part, i.e. we replace all wiggled lines in I by dashed ones which are to be read as: 

i J 

contributes a factor 73~k3j~ 

where 7' is an average of the occurring 7'A~: 

A , B  ~ v 

~' - 5 5~ 5~ 1 
A , B  /l v 

C. We assume M to be nearly diagonal, i.e., we set: 

Mij(~o) m M**(oJ)3~ s 

Approximation A permits confining to low lying VIP's, which is advisable, since 
the final iteration procedure converges slowly for higher VIP's. Approximation B 
is obtained by replacing in (4) all the 7'AB by the mean value 7, (which is an approxi- 
mation invariant to all AO-transformations [11]) and employing the orthogonality 
of the CNDO coefficients matrix cu~ [11]: 

v,j~ ~ ~ y~ c.,c.~ ~ ev,c~ = ~ , ~  (5) 
I t  V 

Approximation C is encountered even in the ab initio framework [5, 6] and should 
also be allowed in the cruder CNDO framework [1, 2, 18]. 

With these approximations Eq. (3) becomes: 

: t---It (6) 
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The expansion now terminates after the third term. This is because in all further 
diagrams we find that a particle and a hole line meet at the same end of a dashed 
line, which makes the diagram vanish (the dashed line yields a 3~k, while i and k 
run over different index sets). Inserting (6) into (2) (with approximation A) we get: 

al 
++? ~,~=o v==o vz=o 

(7) 

(The dots symbolize that there are vl, v2, va equal dashed lines.) Going on to the 
irreducible self-energy part (1) (observing approximation A) we have: 

t 

. . . . .  q 

~ O  O 

(8) 

For translating these diagrams we have to first perform the time permutations. 

again that all diagrams with parts as . . . .  ~ or . . . .  _ ~  vanish, only Noting 
I I 

the time orderings remain for which the dashed lines are situated between the 
wiggled lines. Furthermore, diagrams which are distinguished merely by a permu- 
tation of dashed lines give equal values (there are [(vl + v2 + va)!/vl!v2I v2!] such 
diagrams for given vl, v2, v3). In this way we obtain: 
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c r  J r  e m - -  e k - -  e I r  J r  e m e k - -  e l 

/ r  

oo J r  e m - -  e k - -  e l  J r  e m  - -  et~ - -  e l  

J r  . . . . . . . .  
m~o cc  02 J r  e m - -  e k - -  e l r  J r  e m e l ;  - -  e 
k,/~OOC 

. . . . .  . ( 9 )  
J r  e m e k - -  e l r  J r  era ele - -  e l 

(occ is an abbreviation for the index set of  occupied spin orbitals.) Using the multi- 
nomial theorem we can convert the three v-summations into one and sum up the 
resulting geometrical series, thus ending with: 

Era~,(V~,jra- V~,ra3 
M ~ j ( ~ )  = ~ ~ + era - ~ - e, + 7' 

ra~ooo 
k , l~ tocc  

v, ra~,(v~,ra- v~,mj) ( i0)  
J r  ~ '  CO J r  e m - -  e k - -  e l - -  7 "  m r  

k , / ~ o c c  

We mention that our M conserves the analytical properties of the exact irreducible 
self-energy part  as described in Ref. [19]. Furthermore, it is interesting to note that 
(10) is closely related to Eq. (4.31) of Ref. [10] which was used with ab initio values: 
we obtain (10) if we set Vu~z --> 7'8~kSj~ in the denominator of Eq. (4.31) of  Ref. [10]. 
From this connection it might be plausible to take some effective 7'~ for different 
orbitals %. Another possible modification would be to treat 7' as a parameter and 
determine it through numerical fitting. However, these further modifications will 
not be considered here. 

Let us now proceed to the VIP calculation. The negative VIP's, occurring as poles 
of  the one-particle Green's function, are obtained as zeros of  the eigenvalues of  
the inversed Green's function matrix G -~ which is given by the inverse Dyson 
equation (cf. e.g. Ref. [8], p. 64): 

[a -~ ( , , ) ] , ;  = (,.,., - e ~ ) ~ ; -  M,;(o~). (11) 

By means of approximation C the matrix G -~ becomes diagonal and therefore the 
negative VIP's,  denoted by o~, are determined by: 

co, = e, + M,(oJ 0. (12) 

This is solved by iteration: 

o~ = lim o~} m 
N'--~ cO 
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with 

r O) ~ ,~ 

~o~ n+l~ = e~ + M~(o~ N)) 

gimkl( g~mkl - Vimlk ) 

rnsocc 
~,/r 

V~m~(V~m~- V~m~) (13), 
+ T g -- 7 mr 

~,l~OOO 

In case of closed-shell molecules we can perform the spin summations which corre- 
sponds to replacing the numerators in (13) by V{m~Z(2V~mkz -- V{mz~) - all the indices 
designating only spatial orbitals then. 

3. Applications 

To test the above described method, we applied it to some closed-shell molecules. 

Kellerer et al. [1, 2] ment ioned that symmetry may cause fortuitous results in the 
C N D O  framework. We tried to avoid this influence by selecting molecules from 

different symmetry groups, namely F2(Do~h), HF(Coov), C2F~(D2h), CH2F2(C2v), 

BFa(D3h), CHaF(C3~) and CF4(Ta). 

The results of  our calculations are reported in Tables 1-7. We explain now the 

quantit ies listed there: I (~ are the V1P's according to K oopma ns '  theorem, i.e. the 

C N D O  orbital energies with reversed sign, which were calculated by a CNDO/2  
library program [15] using the following geometries [16]: ( F D F - F  = 1.4177 A;  

(HF)  H - F  = 0 .917A;  (C2F4) C - C =  1.27A, C - F =  1.33A, 42FCF = 110~ 

Table 1. VIP's for F2 (in eV), 7 = 17.91 eV 

MO I (~ 1 (2) I (y) l(eXp)~ 

1% 22.09 18.53 15.55 15.83 
3% 22.72 23.37 23.65 21.0 
1~~, 25.76 21.33 16.72 18.8 
2cr,~ 41.98 38.17 37.18 - -  

Ref. [2] (estimate from spectra of Ref. [17]). 

Table 2. VIP's for HF (in eV), Y = 21.82 eV 

MO I c~ 1 (2) I (~) I (~xp) ~ 

17r 21.27 19.64 17.58 16.05 
3or 23.13 22.80 22.26 19.9 
2or 45.54 44.22 42.71 - -  

Ref. [1] (estimate from spectra of Ref. [12]). 
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Table 3. VIP's for C2F4 (in eV), 7 = 9.80 eV 

MO I (~ I ~27 I (v7 l(OXpT~ 

2b2~ 14.52 12.93 12.47 10.52 
6ag 18.76 16.33 15.51 15.95 
4b2g 20.30 17.71 16.72 16.4 
4b~ 20.91 17.39 16.13 16.6 
la~ 22.12 18.15 16.78 16.9 
lbag 22.18 18.14 16.72 17.60 
5b3~ 22.24 18.41 16.99 18.21 

Ref. [211. 

Table 4. VIP's for CH2F2 (in eV), 7 = 12.35 eV 

MO 1 (07 1 (2) I (v7 l(OXp7 a 

2b2 17.08 15.25 14.48 13.27 
6ai 18.95 16.79 15.80 - -  
4bl 19.85 17.23 16.04 15.3 
la2 21.40 17.80 16.16 15.71 
361 23.95 21.45 20.05 - -  
5a~ 25.25 22.48 20.89 18.9 
lb2 26.86 24.12 22.29 - -  

Ref. [141. 

Table 5. VIP's for BFa (in eV), 7 = 11.90 eV 

MO 1 (07 1 (27 I (v7 l(eXp7 a 

le" 19.93 17.17 16.05 16.68 
3e" 20.68 17.75 16.55 17.13 
la~ 21.17 17.49 15.98 15.95 
2e' 25.28 21.67 19.89 20.14 
2a~ 25.58 22.49 20.94 21.4 
2a~ 26.23 23.07 21.34 19.06 

a Ref. [2] (interpretation of spectra from Ref. [13]). 

Table 6. VIP's for CH3F (in eV), 7 : 12.82 eV 

MO I (~ 1 (2) I (v) I (eXp) ~ 

2e 17.56 15.67 14.76 13.05 
5al 21.27 20.02 19.22] 

17.0 
le 24.12 21.61 19.98) 

Ref. [14]. 
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Table 7. VIP's for CF~ (in eV), 7 = 11.33 eV 

Chr.-M. Liegener and U. Scherz 

MO I ~~ I (2) I (~) I (~ 

4t2 20.19 17.87 16.99 17.40 
ltz 22.24 18.69 17.32 16.20 
le 23.30 19.66 18.21 18.50 
3t2 28.18 24.97 23.38 22.12 
4ax 29.47 26.85 25.58 25.12 

Ref. [14]. 

(CH2F2) C - H  = 1.093 A, ~ H C H  = 109 ~ 28', C - F  = 1.36 A, 42FCF = 108.5~ 
(BFa) B-F  = 1.295 A; (CHaF) C - H  = 1.106 A, ~ H C H  = 110.0 ~ C - F  = 1.38527 A,; 
(CF4) C - F  = 1.323 A. I (2~ are the VIP's  by second order M (with approximation 
C), which were obtained by omitting the 7's in (13). I (r~ are the VIP's  yielded by the 
full procedure (13). I (exp~ are the experimental values for the VIP's  taken from 
photoelectron spectra available in the literature [12-14, 17, 20-23]. 

The fluorine molecule (Table 1) is an example for which Koopmans '  theorem 
breaks down: The Har t ree-Fock  (CNDO) level sequence 1Trg < 3% < 17r~ is in 
contrast with the empirical 1% < lzry < 3% [2, 17]. The second order VIP's  I (2~ 
are already correct in sequence but still far from the expected values. Better agree- 
ment with experiment is achieved by our approximation I (~. I t  is remarkable to 
note that Koopmans '  defects for F2, calculated by our method, are of different 
sign in contrast to what Biskupi6 et al. [7] observed for their method. This fact 
obviously facilitates correcting the wrong level sequence. 

In the cases of  hydrogen fluoride, methylene fluoride and methyl fluoride (Tables 
2, 4, 6) Koopmans '  theorem yields the correct level ass ignment-  only the numerical 
values are too high. This latter point is met by perturbation theory: the values 
I (~ I (2~ and I (~) monotonically tend towards the experimental ones. 

With tetrafluoroethylene (Table 3) there is the difficulty that several of  the bands 
lie so close together that any assignment beyond the first few levels will be somewhat 
arbitrary, as mentioned by Brundle et al. [21]. Our assignment for 2b2y and 6ao 
agrees with that of Brundle et al. [21]. For 4b2~, 4b1~, lay, lbsg our CNDO values 
according to Koopmans '  theorem give the same level ordering 4b2g < 4bly < 
lay < lbag as found in Ref. [21], while the VIP's  obtained by perturbation theory 
(I  (2~, I (~) suggest the different assignment 4bly < 4b2g < lbsg < lay. The assign- 
ment in Ref. [21] was done by ab initio Gaussian type calculations assuming the 
Koopmans '  defects to be 8 ~  of the orbital energies. However, this at tempt is not 
able to reproduce a level crossing. Our results, therefore, indicate that in this case 
the 8~o rule for Koopmans '  defects may be insufficient. 

As to boron trifluoride (Table 5), there exist different assignments of  the first three 
VIP's in the literature [13, 22, 23, 2]. Our calculations agree with the assignment 
of  Refs. [23, 2], namely la~ < le" < 3e'. One should note that this is achieved 
only by our final results I (~, while I (~ and even I ~2~ still differ in sequence. The 
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order ing  o f  the higher  VIP ' s  2e', 2a~, and 2a2 remains  incorrect ,  but  at  least they 
come closer to the exper imenta l  values by per tu rba t iona l  t rea tment .  

F o r  carbon  te t raf luoride (Table  7) the empir ical  level sequence is 1 tl < 4t2 < le  < 
3t2 < 4ai  [14]. Our  results agree with this, except that  l t l  and  4t2 have changed 
places (thus reproduc ing  the earl ier  assignment  o f  Basset et al. [20]), but  under  the 
pe r tu rba t iona l  t r ea tment  this er ror  is at  least reduced (cf. also Ref. [18]). F o r  the 
higher VIP 's ,  le,  3t2, and 4a~ our  results I (~ I (~, and I (r~ monoton ica l ly  converge 
towards  the exper imenta l  values. 

In  conclusion we should say that  our  procedure  consti tutes a considerable  improve-  
ment  over the second order  app roach ;  in its s implici ty it seems promis ing  for 
tackl ing jus t  larger  molecules, for which ab initio calculat ions are  not  available.  
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